Search results for "Hot Jupiter"

showing 4 items of 4 documents

Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?

2009

We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jup…

010504 meteorology & atmospheric sciencesGas giantEvolutionAstrophysics01 natural sciencesArticleOriginPlanet0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsHot NeptuneKepler-10b010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsExoplanetsAstronomyAstronomy and AstrophysicsExoplanetCoRoT-7b13. Climate actionSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsMass lossPlanetary massJupiter massIce giantPlanetary and Space Science
researchProduct

ARES. III. Unveiling the Two Faces of KELT-7 b with HST WFC3

2020

We present the analysis of the hot-Jupiter KELT-7b using transmission and emission spectroscopy from the Hubble Space Telescope (HST), both taken with the Wide Field Camera 3 (WFC3). Our study uncovers a rich transmission spectrum which is consistent with a cloud-free atmosphere and suggests the presence of H2O and H-. In contrast, the extracted emission spectrum does not contain strong absorption features and, although it is not consistent with a simple blackbody, it can be explained by a varying temperature-pressure profile, collision induced absorption (CIA) and H-. KELT-7 b had also been studied with other space-based instruments and we explore the effects of introducing these additiona…

010504 meteorology & atmospheric sciencesOpacityFOS: Physical sciencesEFFICIENTTransmission spectroscopy; Exoplanet atmospheres; Astronomy data analysisAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstronomy & Astrophysics01 natural sciencesAtmosphereHubble space telescope0103 physical sciencesTransmission spectroscopyEMISSION-SPECTRUMWATERBlack-body radiationEmission spectrumAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEarth and Planetary Astrophysics (astro-ph.EP)PhysicsScience & TechnologyHOT JUPITERSAstronomy and AstrophysicsBIASESEXOPLANETSTransmission (telecommunications)13. Climate actionSpace and Planetary SciencePhysical SciencesAstronomy data analysisHD 209458BAstrophysics::Earth and Planetary AstrophysicsATMOSPHERESWide Field Camera 3Astrophysics - Earth and Planetary AstrophysicsExoplanet atmospheresThe Astronomical Journal
researchProduct

Multi-band high resolution spectroscopy rules out the hot Jupiter BD+20 1790b - First data from the GIARPS Commissioning

2018

Context. Stellar activity is currently challenging the detection of young planets via the radial velocity (RV) technique. Aims. We attempt to definitively discriminate the nature of the RV variations for the young active K5 star BD+20 1790, for which visible (VIS) RV measurements show divergent results on the existence of a substellar companion. Methods. We compare VIS data with high precision RVs in the near infrared (NIR) range by using the GIANO - B and IGRINS spectrographs. In addition, we present for the first time simultaneous VIS-NIR observations obtained with GIARPS (GIANO - B and HARPS - N) at Telescopio Nazionale Galileo (TNG). Orbital RVs are achromatic, so the RV amplitude does …

PhysicsEarth and Planetary Astrophysics (astro-ph.EP)010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)Astrophysics01 natural sciences7. Clean energyRadial velocityPhotometry (astronomy)StarsAmplitudeAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePlanet0103 physical sciencesHot JupiterSpectroscopy010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics - Earth and Planetary Astrophysics
researchProduct

The effect of ISM absorption on stellar activity measurements and its relevance for exoplanet studies

2017

Past UV and optical observations of stars hosting hot Jupiters have shown that some of these stars present an anomalously low chromospheric activity, significantly below the basal level. For WASP-13, observations have shown that the apparent lack of activity is possibly caused by absorption from the intervening ISM. Inspired by this result, we study the effect of ISM absorption on activity measurements (S and logR'$_{\rm HK}$ indices) for main-sequence late-type stars. To this end, we employ synthetic stellar photospheric spectra combined with varying amounts of chromospheric emission and ISM absorption. We present the effect of ISM absorption on activity measurements by varying several ins…

Stars: activity010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsStars: late-typeAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linePlanets and satellites: general0103 physical sciencesHot JupiterAstrophysics::Solar and Stellar AstrophysicsAbsorption (electromagnetic radiation)010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesISM: generalPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Astronomy and AstrophysicsExoplanetStars: chromospheresStarsActivity measurementsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceStars: activity; Stars: chromospheres; Stars: late-type; ISM: general; Planets and satellites: generalAstrophysics::Earth and Planetary AstrophysicsAstrophysics - Earth and Planetary Astrophysics
researchProduct